Aminoglycoside binding in the major groove of duplex RNA: the thermodynamic and electrostatic forces that govern recognition.
نویسندگان
چکیده
We use a combination of spectroscopic, calorimetric, viscometric and computer modeling techniques to characterize the binding of the aminoglycoside antibiotic, tobramycin, to the polymeric RNA duplex, poly(rI).poly(rC), which exhibits the characteristic A-type conformation that is conserved among natural and synthetic double-helical RNA sequences. Our results reveal the following significant features: (i) CD-detected binding of tobramycin to poly(rI).poly(rC) reveals an apparent site size of four base-pairs per bound drug molecule; (ii) tobramycin binding enhances the thermal stability of the host poly(rI).poly(rC) duplex, the extent of which decreases upon increasing in Na(+) concentration and/or pH conditions; (iii) the enthalpy of tobramycin- poly(rI).poly(rC) complexation increases with increasing pH conditions, an observation consistent with binding-induced protonation of one or more drug amino groups; (iv) the affinity of tobramycin for poly(rI).poly(rC) is sensitive to both pH and Na(+) concentration, with increases in pH and/or Na(+) concentration resulting in a concomitant reduction in binding affinity. The salt dependence of the tobramycin binding affinity reveals that the drug binds to the host RNA duplex as trication. (v) The thermodynamic driving force for tobramycin- poly(rI).poly(rC) complexation depends on pH conditions. Specifically, at pH< or =6.0, tobramycin binding is entropy driven, but is enthalpy driven at pH > 6.0. (vi) Viscometric data reveal non-intercalative binding properties when tobramycin complexes with poly(rI).poly(rC), consistent with a major groove-directed mode of binding. These data also are consistent with a binding-induced reduction in the apparent molecular length of the host RNA duplex. (vii) Computer modeling studies reveal a tobramycin-poly(rI). poly(rC) complex in which the drug fits snugly at the base of the RNA major groove and is stabilized, at least in part, by an array of hydrogen bonding interactions with both base and backbone atoms of the host RNA. These studies also demonstrate an inability of tobramycin to form a stable low-energy complex with the minor groove of the poly(rI).poly(rC) duplex. In the aggregate, our results suggest that tobramycin-RNA recognition is dictated and controlled by a broad range of factors that include electrostatic interactions, hydrogen bonding interactions, drug protonation reactions, and binding-induced alterations in the structure of the host RNA. These modulatory effects on tobramycin-RNA complexation are discussed in terms of their potential importance for the selective recognition of specific RNA structural motifs, such as asymmetric internal loops or hairpin loop-stem junctions, by aminoglycoside antibiotics and their derivatives.
منابع مشابه
Structural basis for recognition of the RNA major groove in the tau exon 10 splicing regulatory element by aminoglycoside antibiotics.
Drug-like molecules that bind RNA with sequence selectivity would provide valuable tools to elucidate gene expression pathways and new avenues to the treatment of degenerative and chronic conditions. Efforts at discovering such agents have been hampered, until recently, by the limited knowledge of RNA recognition principles. Several recent structures of aminoglycoside-RNA complexes have begun t...
متن کاملSpectroscopic, Thermodynamic and Molecular Docking Studies on Interaction of Toxic Azo Dye with Bovine Serum Albumin
Investigation on interaction of azo dyes with bovine serum albumin as carrier protein will be important in the field of toxicology because of distribution and transportation of dyes in blood. In this regard, the interaction between the azo dye, trisodium (4E)-3-oxo-4-[(4- sulfonato-1- naphthyl) hydrazono] naphthalene-2,7-disulfonate (C20H11N2Na3O10S3), known as Amaranth and bovine serum albumin...
متن کاملNew approaches toward recognition of nucleic acid triple helices.
A DNA duplex can be recognized sequence-specifically in the major groove by an oligodeoxynucleotide (ODN). The resulting structure is a DNA triple helix, or triplex. The scientific community has invested significant research capital in the study of DNA triplexes because of their robust potential for providing new applications, including molecular biology tools and therapeutic agents. The triple...
متن کاملThermodynamic Analysis for Cationic Surfactants Binding to Bovine Serum Albumin
In the present study, the binding isotherms for interaction of a homologous series of n-alkyltrimethyl ammonium bromides with bovine serum albumin (BSA) have been analyzed on basis of intrinsic thermodynamic quantities. In this regards, the intrinsic Gibbs free energy of binding, AGb(i,)„ has been estimated at various surfactant concentrations and its trend of variation for both binding sets ha...
متن کاملBinding of a hairpin polyamide in the minor groove of DNA: Sequence-specific enthalpic discrimination (polyamide-DNA binding affinityyisothermal calorimetryy2:1 pyrrole-imidazole DNA binding motifypolyamide-base hydrogen bondsyimidazole-guanine interaction)
Hairpin polyamides are synthetic ligands for sequence-specific recognition in the minor groove of doublehelical DNA. A thermodynamic characterization of the DNAbinding properties exhibited by a six-ring hairpin polyamide, ImPyPy-g-PyPyPy-b-Dp (where Im 5 imidazole, Py 5 pyrrole, g 5 g-aminobutyric acid, b 5 b-alanine, and Dp 5 dimethylaminopropylamide), reveals an '1-2 kcalymol greater affinity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 298 1 شماره
صفحات -
تاریخ انتشار 2000